47 research outputs found

    Design and optimization of large stroke flexure mechanisms

    Get PDF

    3D-printed flexure-based finger joints for anthropomorphic hands

    Get PDF
    Flexure-based finger joints for prosthetic hands have been studied, but until now they lack stiffness and load bearing capacity. In this paper we present a design which combines large range of motion, stiffness and load bearing capacity, with an overload protection mechanism. Several planar and non-planar hinge topologies are studied to determine load capacity over the range of motion. Optimized topologies are compared, in 30 degrees deflected state, in terms of stresses by deflection and grasping forces. Additionally, support stiffnesses were computed for all hinges in the whole range of motion (45 degrees). The Hole Cross Hinge presented the best performance over the range of motion with a grasping force up to 15 N while deflected 30 degrees. A new concept, the Angle Three-Flexure Cross Hinge, provides outstanding performance for deflections from 17.5 up to 30 degrees with a 20 N maximum grasping force when fully deflected. Experimental verification of the support stiffness over the range of motion shows some additional compliances, but the stiffness trend of the printed hinge is in line with the model. The presented joints power grasping capability outperform current state flexure-base hands and are comparable to commercial non-flexure-based prosthetic hands. In the event of excessive loads, an overload protection mechanism is in place to protect the flexure- hinges

    Inverted curved flexure hinge with torsional reinforcements in a printed prosthetic finger

    Get PDF
    Flexure-based finger joints for prosthetic hands have been studied, but until now they lack stiffness and load capacity. In this paper we present a design which combines large range of motion, stiffness and load capacity, with a torsional overload protection mechanism. Five design considerations which increase grasp force and limit the stress values are presented: (1) Due to the inverted flexure attachment, the flexures are loaded mainly in tension, avoiding buckling of flexures. (2) Curved flexures have been used of which one straightens out at large deflection angles to improve load capacity at large deflections. (3) To achieve high torsional loads, one of the flexures is outfitted with triangular torsional stiffeners, which increase the out-of-plane stiffness significantly, while only slightly increasing the actuation stiffness. (4) The entire joint is rotated by 20˚ so the combination of actuation and contact forces lead to mainly axial forces in the curved leaf spring, avoiding excessive internal bending. The presented prosthetic flexure-based finger joint is able to achieve 20N of contact force with an additional 5N of out of plane load over the entire 80˚ range of motion, which is a major improvement over existing prosthetic flexure-based finger designs

    Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

    Get PDF
    BACKGROUND: Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5(th )cranial nerve, MeV) while all its other sensory afferents are in the trigeminal ganglion (TG). We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle. RESULTS: MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (I(Ca)) in 90% of MeV neurons, although I(Ca )were inhibited by GABA(B )receptor activation. All MeV afferents had brief (1 msec) action potentials driven solely by tetrodotoxin (TTX)-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3) thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by μ-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials. CONCLUSION: Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle

    A survey for variable young stars with small telescopes: II - mapping a protoplanetary disc with stable structures at 0.15 au

    Get PDF
    The HOYS citizen science project conducts long term, multifilter, high cadence monitoring of large YSO samples with a wide variety of professional and amateur telescopes. We present the analysis of the light curve of V1490 Cyg in the Pelican Nebula. We show that colour terms in the diverse photometric data can be calibrated out to achieve a median photometric accuracy of 0.02 mag in broadband filters, allowing detailed investigations into a variety of variability amplitudes over timescales from hours to several years. Using Gaia DR2 we estimate the distance to the Pelican Nebula to be 870 +70 −55 pc. V1490 Cyg is a quasi-periodic dipper with a period of 31.447 ± 0.011 d. The obscuring dust has homogeneous properties, and grains larger than those typical in the ISM. Larger variability on short timescales is observed in U and Rc−Hα, with U-amplitudes reaching 3 mag on timescales of hours, indicating the source is accreting. The Hα equivalent width and NIR/MIR colours place V1490 Cyg between CTTS/WTTS and transition disk objects. The material responsible for the dipping is located in a warped inner disk, about 0.15 AU from the star. This mass reservoir can be filled and emptied on time scales shorter than the period at a rate of up to 10−10 M�/yr, consistent with low levels of accretion in other T Tauri stars. Most likely the warp at this separation from the star is induced by a protoplanet in the inner accretion disk. However, we cannot fully rule out the possibility of an AA Tau-like warp, or occultations by the Hill sphere around a forming planet
    corecore